Сопротивление изоляции: допустимые значения измерений, минимальные нормы для кабелей и приборов

Что такое измерение сопротивления изоляции

Замеры сопротивления изоляции электропроводки: периодичность

Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную). Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль. Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Обратите внимание: Импульсные посылки амплитудой порядка 1-2 кВ генерируются самим же мегаомметром.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в «динамо-машине»). Специалисты нередко называют их «стрелочными», что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи). Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей. Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.

Цифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением «1800 in».

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый «продвинутый» мультиметр, ни любой другой подобный ему образец. С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Что такое мегаомметр?

Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

Итак:

  • На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.

На фото изображен универсальный мегаомметр
На фото изображен универсальный мегаомметр

  • По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

Кто и когда имеет право производить замеры мегаомметром

Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.
Итак:

  • Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

Обратите внимание! Наружная электропроводка и проводка, выполненная в особо опасных помещениях, должна проходить замер сопротивления изоляции ежегодно. Кроме того ежегодно проходит проверку электропроводка кранов, лифтов, детских и оздоровительных учреждений.

  • Периодичность проверки сопротивления изоляции электропроводки электрических печей составляет 1 раз в полгода. При этом замеры должны производиться во время максимально нагретого состояния печи.
    Кроме того раз в полгода следует визуально осматривать состояние заземления печи. Эти же нормы проверки относятся и к сварочным аппаратам.

Как работать с мегаомметром?

Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

Схема подключения мегаомметра в трехфазной цепи

Обратите внимание! Для работы с мегаомметром во всех электроустановках, на которых предстоит производить замеры, следует снять напряжение. Кроме того следует снять напряжение с соседних электроустановок, к которым возможно случайное прикосновение.

Итак:

  • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
  • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
    1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
    2. После этого включаем все выключатели сети освещения.
    3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
    4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.

Обратите внимание! При выполнении замера должны быть приняты меры по предотвращению повреждения полупроводниковых и микроэлектронных приборов в цепи. Поэтому если в вашей цепи таковые присутствуют, их необходимо «выцепить» до проведения замеров.

  • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
  • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.
  • Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).

Мегаомметр М4100Мегаомметр-Ф-4100Мегаомметр-ЭС-02021ГЦифровой измеритель Fluke 1507

Важно! Для замеров берутся только предварительно поверенные приборы, обязательно имеющие лицензию производителя.

Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.

Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.

Причины повреждения изоляции кабелей

Можно выделить основные причины повреждения изоляции кабелей:

  • высокая влажность воздуха;
  • резкие перепады температур;
  • механические повреждения, возникающие во время монтажа или в процессе эксплуатации;
  • физический износ.

Виды проверок изоляции кабелей

Для оценки состояния изоляции кабелей проводится два вида испытаний:

  1. Проверка электрической прочности изоляции. Она выполняется при повышенном напряжении с помощью пробойной установки, в состав которой входит повышающий трансформатор. Как правило, этот вид испытания проводится в лаборатории.
  2. Измерение сопротивления изоляции постоянному току. Для его проведения нужен только мегаомметр. Этот вид испытаний отличается мобильностью и может выполняться без привязки к стационарной лаборатории.

Используемые методы испытаний

Еще до того, как проверить состояние изоляции – важно определиться с объектом, на котором требуется оценить ее качество. Это могут быть:

  1. Электрическая проводка.
  2. Силовые кабели высокого напряжения.
  3. Низковольтные линии электропередач.
  4. Контрольные провода.

Для каждой из этих электротехнических категорий выбираются индивидуальные методики измерения сопротивления изоляции. Рассмотрим все перечисленные варианты более подробно.

Электропроводка

Перед началом измерительных процедур электропроводка и распределительные коробки осматриваются на предмет отсутствия разрывов и явных разрушений. После этого обследуются места подсоединения проводов к типовым розеткам и выключателям.

Важно! Начинать замеры сопротивлений изоляции допускается лишь после того, как проводка полностью обесточена, а все потребители на объекте отключены от нее.

Измерение сопротивления изоляции электропроводки с помощью цифрового прибора Fluke-1507

В однофазной сети для определения искомого параметра потребуется провести следующие операции:

  1. Сначала щупы мегаомметра подключаются между фазной и нулевой жилами проводки.
  2. Затем определяется сопротивление изоляции между фазной и центральной жилой защитного заземления.
  3. Количество проведенных измерений соответствует комплекту проводов в линии.

Если при снятии показаний мегаомметр показывает сопротивление менее 0,5 Мом – электрическую линию придется разбить на более короткие отрезки. По результатам последующих обследований каждого из них находится участок с неудовлетворительным качеством изоляции. Его в последствии нужно будет полностью заменить.

Высоковольтные силовые кабели (подготовка)

Перед измерением изоляции силового кабеля последний проверяется на отсутствие на нем опасных напряжений. Кроме того, для подготовки измерительной схемы потребуется проделать следующие операции:

  1. Прежде всего, с токоведущих жил посредством переносного заземления нужно снять остаточный заряд.
  2. Затем кабель полностью очищается от пыли и грязи, мешающих измерительному процессу.
  3. После этого потребуется ознакомиться с паспортными данными кабеля (там указывается искомый параметр, полученный по результатам заводских испытаний).
  4. Последняя операция необходима для того, что заранее определиться с рабочим пределом, выставляемом на приборе.

Подготовка кабельной линии к проведению измерений сопротивления изоляции

Важно! Перед измерением сопротивления изоляции кабеля обязательно проведение контрольной проверки мегаомметра на исправность.

Эта операция состоит в контроле показаний по шкале прибора при замкнутых и разомкнутых измерительных концах. В первом случае стрелка смещается ближе к «нулю», а во втором – показывать «бесконечность».

Силовые кабели (измерения)

Измерение сопротивления изоляции мегаомметром начинается с контрольной проверки каждой из фаз по отношению к заземленной стальной оболочке. И лишь после этого проверяется сопротивление между отдельными жилами (фото слева). В процессе снятия показаний недопустимо чтобы измерительные концы соприкасались между собой, а также контачили с заземляющими конструкциями и стальной оболочкой.

а) измеряется сопротивление изоляции между фазой и заземленной оболочкой кабеля, б) замер сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».

Если обнаружится, что сопротивление изоляции ниже допустимого уровня – в соответствие с требованиями ПУЭ проводится дополнительные замеры. Они предполагают проведение измерений изоляции всех фаз по отношению к земле и оценку величины проводимости между фазными проводниками.

Обратите внимание: Для повышения точности снятия показаний, указывающих на величину сопротивления изоляции проводов, делается несколько замеров.

Их общее число варьируется: для 3-х жильного кабеля в пределах 3-6 измерений, а для пятижильного может потребоваться 4, 8 или даже 10 подходов.
Поскольку для трехфазных цепей существует несколько схем измерений – по тому же паспорту следует ознакомиться с предлагаемым производителем вариантом. До момента индикации точных показаний на шкале мегаомметра согласно инструкции должно пройти не более 60 секунд (с момента подключения концов и подачи высокого напряжения). Если за это время из-за высокой влажности, например, определить показания не удалось (стрелка не отклонилась на расчетное значение) – операцию придется провести еще раз.

Перед повторным испытанием следует снова снять остаточный заряд путем наложения заземления. Затем потребуется переключить прибор на нужный предел и повторить контрольные замеры. Согласно правилам ТБ эту операцию необходимо проводить в диэлектрических перчатках. рекомендуется следовать указаниям п.п. 1.7.81, 2.1.35 ПУЭ, в которых оговариваются условия безопасной работы. Основные из них приведены ниже.

  • у нулевых рабочих и защитных шин изоляция должна быть равноценна защитному покрытию фазных проводников;
  • со стороны источников питающего напряжения и его приемника нулевые проводники следует отсоединять от заземленных элементов цепи;
  • проведение замеров в силовых электропроводках проводится только при полностью снятом напряжении, выключенных вводных автоматах или рубильниках.

Последний пункт дополняется обязательным требованием вынуть предохранители, отключить все имеющиеся приемники и вывернуть электролампы. Предлагаемые в инструкции схемы замеров различаются только их количеством (4 и 8 вместо 3 и 6) и необходимостью использования защитной клеммы «Экран» на мегаомметре.

Низковольтные силовые кабели

При работе с низковольтными силовыми линиями они в первую очередь проверяются на предмет отсутствия на их элементах опасных напряжений. Подобно уже рассмотренным высоковольтным кабелям перед обследованием этих изделий потребуется проделать следующие операции:

  1. Сначала с токоведущих жил при помощи переносного заземления снимается опасный остаточный заряд.
  2. По завершении этой операции оболочка кабеля и его рабочие жилы полностью очищаются от пыли и грязи.
  3. Затем изучаются документы (паспорт, например), где указывается нормируемое сопротивление изоляции для испытуемого образца.
  4. Последняя операция проводится с целью примерной оценки измеряемой величины и выбора нужного предела измерения на приборе.

Для ее проведения берется мегаомметр, рассчитанный на напряжение генерации 1000 Вольт. По завершении всех подготовительных операций переходят непосредственно к измерениям. Их порядок может быть представлен в виде следующей последовательности действий:

  1. Сначала измеряется искомое сопротивления между фазными жилами испытуемой кабельной линии («А»-«В», «В»-«С» и «А»-«С»).
  2. Затем по очереди оценивается состояние изоляция каждой из фаз относительно нулевого провода (N).
  3. Далее следует последовательность измерений между каждой фазой и заземляющим проводом PE (проводится при проверке трехфазного пятижильного проводника).
  4. Для проведения последней операции нулевой провод отсоединяется от заземляющей шинки, после чего измеряются сопротивления между жилами N и PE.

По завершении каждого очередного действия необходимо «снимать» остаточный заряд уже описанным ранее способом.

Контрольные кабели (подготовка)

Проверить сопротивление в этом случае удастся только при выполнении следующих требований:

  1. Температура окружения должна укладываться в диапазон от –30 до +50 градусов (при влажности до 90%).
  2. Они влияют на допустимость работы с тем или иным образцом мегаомметра в конкретной ситуации.
  3. Условия измерения (протяженность контролируемого кабеля, в частности) и рабочее напряжение выбираются в зависимости от его марки.
  4. Если паспорт на кабельное изделие отсутствует – к нему согласно ПУЭ (табл. 1.8.39) прикладывается испытательное напряжение от 0,5 до 1 кВ.

Обратите внимание: Допускается проводить испытания вместе со всей подключенной к кабелю аппаратурой (магнитными пускателями и защитными реле, установленными в линии).

Перед проверкой сопротивления обязательно знакомство с безопасными приемами работы с кабелем. Они сводятся к соблюдению следующих правил:

  • к замерам под напряжениями до 1 кВ допускаются только специалисты с 3-й группой допуска или выше;
  • исследуемый кабель обязательно отсоединяется от электросети, после чего с него удаляется остаточный заряд;
  • перед началом измерительных операций необходимо побеспокоиться о том, чтобы поблизости от этого места не было посторонних лиц.

К токоведущим жилам напряжение прикладывается посредством щупов с изолированными ручками типа «держатели». Помимо этого в целях безопасности запрещено прикасаться к токопроводящим шинам, к которым подсоединен включенный мегаомметр. По завершении текущих испытаний с контрольной части кабеля обязательно снимается остаточный заряд. Для этого используются переносные заземления или активируется специальная функции измерительного прибора (она имеется в некоторых моделях).

Контрольные кабели (порядок работ)

Порядок испытания изоляционной защиты контрольных кабелей аналогичен положениям, разработанным для низковольтных линий проводки (до 1 кВ). Исключением является пункт об отключении токопроводящих жил от нагрузочного оборудования. Из-за малой величины передаваемого сигнала делать этого в данной ситуации не обязательно.

Для проведения испытаний потребуется цифровой или аналоговый мегаомметр, по паспорту рассчитанный на рабочие напряжения от 0,5 до 2,5 кВ. Порядок проведения измерений выглядит в этом случае так:

  1. Сначала с проверяемой стороны кабеля выводы токопроводящих жил аккуратно разделываются и зачищаются, а затем разводятся одна от другой на некоторое удаление (порядка 5-10 см).
  2. Далее каждая жила поочередно подключается к «+» мегаомметра, а все остальные жилы скручиваются и подсоединяются к «земле».
  3. Туда же подключается второй вход («–») прибора (см. рисунок ниже).
  4. Затем на рабочий кабель подается испытательное напряжение.
  5. При использовании современных цифровых приборов потребуется внешний источник питания (электрическая сеть или аккумулятор).
  6. Испытания продолжаются не менее минуты, по истечении которой результат фиксируется по шкале, а затем заносится в учетный журнал.
  7. Далее все описанные операции проделываются с каждой сигнальной жилой отдельно (она подключается к прибору, а все другие скручиваются и соединяются со вторым контактом, который в свою очередь связан с землей.

По окончании измерений с рабочих жил снимают остаточный заряд, а мегаомметру дают «отстояться» до следующей серии испытаний. Длительность отводимой на это паузы зависит от конкретного типа и марки прибора. Следующие измерения проводятся с учетом периодичности проведения испытания изоляции.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к
  • гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
    Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Вопрос электробезопасности

Почему перегорают светодиодные лампы

Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:

U – фазное напряжение электроустановки;

RИЗ – сопротивление изоляции электрооборудования;

RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.

Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.

При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.

Требования безопасности

Одно из основополагающих правил при исследовании изоляции заключается в том, что приступать к работе, не удостоверившись в отсутствии напряжения на измеряемом участке, нельзя. Прибор, используемый для испытаний, должен быть поверенным или хотя бы быть сертифицированным.

Использовать необходимо лишь только тот мегомметр, выдаваемое напряжение которого соответствует установленным нормам. Так, для сетей или оборудования с напряжением до 50 В, используется тестер, выдающий 100 В. Применение прибора с меньшим значением не даст правдивости информации о состоянии участка, а большего — может привести к повреждениям.

Контроль над изоляцией

Измерение сопротивления мегомметром необходимо выполнять только на отключенных токоведущих частях, с обязательным снятием остаточного заряда. При этом заземление с токопроводящих частей снимается лишь после подключения тестера. Соединительные провода подсоединяются с помощью изолирующих штанг. При работе прикасаться к токоведущим частям, даже в диэлектрических перчатках, запрещено.

Требования безопасности

Согласно действующим межотраслевым правилам по охране труда при эксплуатации ЭУ, для проверки состояния изоляционного слоя мегомметром должны соблюдаться следующие меры безопасности:

  1. Замеры должны осуществляться квалифицированными специалистами. К проверке изоляционного слоя кабельной линии напряжением менее 1000 Вольт допускаются лица с III, а при напряжении более 1000 В с IV группой по электробезопасности.
  2. Пользоваться прибором необходимо в диэлектрических перчатках.
  3. Установка зажимов мегаомметра должна производиться только на заземленный электрический проводник.
  4. По завершении измерения требуется снять потенциал с проводов, посредством установки заземления.

Измерение проводится в диэлектрических перчатках
Измерение проводится в диэлектрических перчатках

Работы с измерительным устройством выполняются по распоряжению, наряду-допуску или в порядке текущей эксплуатации, в зависимости от уровня напряжения. Проверка изоляционного покрытия установками с подачей высокого напряжения выполняется лицами с правом проведения высоковольтных испытаний.

Периодичность замеров сопротивления изоляции электропроводки

Состояние изоляционной оболочки, проложенной на открытом воздухе электропроводки, должно проверяться каждые двенадцать месяцев. При других вариантах прокладки — раз в тридцать шесть месяцев.

Проверка изоляции электропроводки в частном доме
Проверка изоляции электропроводки в частном доме

Своевременно выявленное ухудшение качества изоляционного покрытия электрических проводников позволит предотвратить аварию или несчастный случай. Проведение требуемых работ должно производиться с соблюдением всех мер безопасности.

Каким должно быть сопротивление изоляции

Величина сопротивления изоляции для разных типов кабелей заложена в двух документах:

  1. Правилах технической эксплуатации электроустановок потребителей (ПТЭЭП): пункт 6.2 и таблица 37.
  2. Правилах устройства электроустановок (ПУЭ): пункт 1.8.37 и таблица 1.8.34.

При этом принято классифицировать кабели по назначению:

  • Высоковольтные силовые. Такие кабели рассчитаны на напряжение более 1000 В. Для них нормированного значения сопротивления изоляции нет. Считается, что оно должно быть не менее 10 МОм.
  • Низковольтные силовые. Кабели этого вида рассчитаны на напряжение менее 1000 В. У них минимальный порог сопротивления изоляции должен быть не ниже 0,5 МОм.
  • Сигнальные, контрольные и общего назначения. Такие кабели используются для подключения распределительных или защитных устройств, питания электроприводов, монтажа цепей управления и прочего. Для них общепринятый показатель сопротивления изоляции должен быть не ниже 1 МОм. Более точные цифры должны быть указаны в сопроводительной документации.

Замеры сопротивления изоляции силовых кабелей выполняются при напряжении 2500 В, всех остальных – 500–2500 В.

Нормы сопротивления изоляции для различных кабелей.

Для определения норма сопротивления изоляции кабелей, нужно провести их классификацию. Кабели по функциональному назначению разделяются на:

  • выше 1000 (В) — высоковольтные силовые
  • ниже 1000 (В) — низковольтные силовые
  • контрольные кабели — (цепи защиты и автоматики, вторичные цепи РУ, цепи управления, цепи питания электроприводов выключателей, отделителей, короткозамыкателей и т.п.)

Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных кабелей осуществляется мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются при напряжении 500-2500 (В).

Каждый кабель имеет свои нормы сопротивления изоляции. Согласно ПТЭЭП и ПУЭ.

Высоковольтные силовые кабели выше 1000 (В) — сопротивление изоляции должно достигать показателя не ниже 10 (МОм)

Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно достигать отметки ниже 0,5 (МОм)

Контрольные кабели — сопротивление изоляции не должно опускаться ниже 1 (МОм)

Источники
  • https://amperof.ru/elektromontazh/electroprivodka/soprotivlenie-izolyatsii.html
  • https://FishkiElektrika.ru/soprotivlenie-izolyatsii-metody-izmereniya-normy
  • https://Elektrik-a.su/izolyaciya-i-zashhita-ot-perenapryazheniya/soprotivlenie/zamer-soprotivleniya-izolyacii-elektroprovodki-28
  • https://tze1.ru/articles/detail/kak-proverit-izolyatsiyu-kabelya/
  • https://www.asutpp.ru/izmerenie-soprotivleniya-izolyatsii-megaommetrom.html
  • https://proagregat.com/kipia/normy-izolyatsii-i-izmereniya-soprotivleniya-kabeley/
  • https://220.guru/electroprovodka/provoda-kabeli/zamer-soprotivleniya-izolyacii.html
  • https://www.calc.ru/Soprotivleniye-Izolyatsii-Kabelya.html


Понравилась статья? Поделиться с друзьями:
Home Made Electronics